MIXED MOCK MODULAR q-SERIES
نویسندگان
چکیده
Mixed mock modular forms are functions which lie in the tensor space of mock modular forms and modular forms. As q-hypergeometric series, mixed mock modular forms appear to be much more common than mock theta functions. In this survey, we discuss some of the ways such series arise.
منابع مشابه
Mock and mixed mock modular forms in the lower half-plane
We study mock and mixed mock modular forms in the lower half-plane. In particular, our results apply to Zwegers’ three-variable mock Jacobi form μ(u, v; τ), three-variable generalizations of the universal mock modular partition rank generating function, and the quantum and mock modular strongly unimodal sequence rank generating function. We do not rely upon the analytic properties of these func...
متن کاملPARTIAL THETA FUNCTIONS AND MOCK MODULAR FORMS AS q-HYPERGEOMETRIC SERIES
Ramanujan studied the analytic properties of many q-hypergeometric series. Of those, mock theta functions have been particularly intriguing, and by work of Zwegers, we now know how these curious q-series fit into the theory of automorphic forms. The analytic theory of partial theta functions however, which have q-expansions resembling modular theta functions, is not well understood. Here we con...
متن کاملSecord-order Cusp Forms and Mixed Mock Modular Forms
In this paper, we consider the space of second order cusp forms. We determine that this space is precisely the same as a certain subspace of mixed mock modular forms. Based upon Poincaré series of Diamantis and O’Sullivan [21] which span the space of second order cusp forms, we construct Poincaré series which span a natural (more general) subspace of mixed mock modular forms.
متن کاملMock Jacobi Forms in Basic Hypergeometric Series
We show that some q-series such as universal mock theta functions are linear sums of theta quotient and mock Jacobi forms of weight 1/2, which become holomorphic parts of real analytic modular forms when they are multiplied by suitable powers of q. And we prove that certain linear sums of q-series are weakly holomorphic modular forms of weight 1/2 due to annihilation of mock Jacobi forms or com...
متن کاملUnimodal Sequences and Quantum and Mock Modular Forms
We show that the rank generating function U(t; q) for strongly unimodal sequences lies at the interface of quantum modular forms and mock modular forms. We use U(−1; q) to obtain a quantum modular form which is “dual” to the quantum form Zagier constructed from Kontsevich’s “strange” function F (q). As a result we obtain a new representation for a certain generating function for L-values. The s...
متن کامل